Past Year JEE Questions

Questions

Quetion: 01

The locus of the point of intersection of the straight lines,

tx - 2y - 3t = 0

x - 2ty + 3 = 0 ($t \in \mathbf{R}$), is :

A. an ellipse with eccentricity $\frac{2}{\sqrt{3}}$

B. an ellipse with the length of major axis 6

C. a hyperbola with eccentricity $\sqrt{5}$

D. a hyperbola with the length of conjugate axis 3

Solutions

Solution: 01

Explanation

Here, tx - 2y - 3t = 0 & x - 2ty + 3 = 0

On solving, we get;

$$y = \frac{6t}{2t^2 - 2} = \frac{3t}{t^2 - 1} \& x = \frac{3t^2 + 3}{t^2 - 1}$$

Put $t = tan\theta$

 \therefore x = -3 sec 2 θ & 2y = 3 (- tan 2 θ)

$$\therefore$$
 sec²2 θ – tan²2 θ = 1

$$\Rightarrow \frac{x^2}{9} - \frac{y^2}{974} = 1$$

which represents at hyperbola

$$\therefore a^2 = 9 \& b^2 = 9/4$$

 λ (T.A.) = 6; e² = 1 + $\frac{9/4}{9}$ = 1 + $\frac{1}{4}$ \Rightarrow e = $\frac{\sqrt{5}}{2}$